
w w w . s y n c s o r t . c o m

W H I T E P A P E R

2

Introduction
The reputation of IBM’s midrange computers, from the earliest System/38 to today’s
Power Systems servers, is reliability. That reliability is in great part due to the journaling
features that have been present in all variations of its operating system. Every system
event and configuration change is journaled (logged) so that recovery from application
errors or hardware problems is easier and faster.

Journaling was initially introduced as a feature of the operating system on IBM
System/38 computers and was intended to aid technicians in their system recovery
efforts. In the event of a catastrophic failure, the system administrator could reload the
last good backup tape and, by applying the saved journal entries that had accumulated
since that backup tape was made, restore the database to the point in time when the
journal entries were last saved to tape. Less catastrophic system crashes, in which
there was only the loss of data in memory, were an easier recovery. At the power-up
IPL following the crash, the journal entries stored on disk would be sequentially applied
to the database, recovering the lost transactions up to the point of failure.

As one would expect, the recovery process for system failures was necessary but
time-consuming. Retrieving the backup tapes from their offsite location and first load-
ing the system tapes and then the journal entry tapes to recover a large and complex
database took several hours at best and sometimes several days. Depending upon
their specific availability requirements, organizations with a low tolerance for extended
downtime increasingly have found the tape-based recovery method inadequate.

Journaling was not originally intended to be used as an all-encompassing high
availability (HA) and disaster recovery (DR) agent; yet over time, it has become the
foundation upon which HA and DR solutions are based. Subsequent improvements
to journaling itself, as well as tangential technologies brought forth by both IBM and
third-party vendors, have fortified the recovery and resiliency capabilities of IBM i,
which now encompass security, compliance, and data-integrity checking.

Journaling is a powerful feature and valuable tool for all HA and DR solutions for the
IBM i. This white paper will cover what you need to know about journaling, what it can
do, and how it supports HA software.

“A journal is a chronological record of changes made
to a set of data. The purpose of the journal is to provide
a means to reconstruct a previous version of the set
of data. When a change is made to a record in a
database file that is being journaled, a copy of the
record is written to the journal, along with information
describing the cause of the change.”

—Frank Soltis, former IBM chief scientist and “father of the AS/400”

”

w w w . s y n c s o r t . c o m

W H I T E P A P E R

3

Journaling Basics
There are two journal types of interest relative to HA for Power Systems servers
running the IBM i operating system (formerly i5/OS and OS/400): the security audit
journal and user journals. The former is the process of tracking changes to object
properties (e.g., object creation/deletion, authorities, etc.), while the latter is the
process of tracking changes to records in data files, data areas, data queues, and
IFS files.

Security audit journal—This journal is a specifically designed for security, allowing
for auditing of all data and configuration changes taking place on the server. It’s
defined by the operating system and can also be used in third-party HA products
such as MIMIX Availability and iTERA Availability to assist in the detection of changes
for the purpose of replicating and maintaining a backup copy of the total source
(production) server environment that contains both user data and configurations.
The security audit journal monitors and records changes for 98 object types. HA
solutions vary in how many objects they monitor through the security audit journal.

User journals—These journals are fully configurable and designed to monitor four
object types: file objects (database), data area objects, data queue objects, and IFS
objects. Their purpose is to capture the delta of changes since the last backup. The
remainder of this paper will discuss the features and functions of user journals as
provided by IBM i OS.

The topic of journaling, as far as this paper is concerned, starts with DR. What
needs to be recreated in the event of a disaster or loss of the system? How far back
in time can the recovery process go to regenerate application data changes? How
much time will it take to get back to normal production? These questions are important
regardless of whether you have days or minutes to recover your critical applications.
Production data must be protected, but for most businesses, non-essential operations
such as testing, data analysis, and other “batch” operations can instead be restarted
from scratch or from some checkpoint. Drilling down further, applications will have
temporary work files that will be recreated automatically during recovery and do
not need to be protected. User journals were designed to cover the vast majority
of production data, which are found in database files, data areas, data queues,
and IFS files.

The basic journaling process (see Figure 1), sometimes referred to as “local journaling,”
can be described as follows:

1. An application processes transactions that typically update records in a
database file.

2. The System Licensed Internal Code (SLIC) intercepts the transactions,
records the changes that have taken place, and creates a record (or
“journal entry”) of the actual changed data. Depending on how an application
is built, including auditing level, there will likely be many entries for each
transaction. Other information written in the journal entry includes the
date and time of the transaction, the user identification, the initiating program,
the job identification, the relative record number, the library of the file
being journaled, and whether the journal entry was generated by a trigger.

w w w . s y n c s o r t . c o m

W H I T E P A P E R

Journal
Entry

4

3. The newly created journal entry is written to a storage area called a
“journal receiver,” where it is available for use.

4. The database change is pinned in memory and is not released until the
journal entry is written to the journal receiver on disk. In order to optimize
system performance, the updated database record itself will continue to
reside in main memory until forced to disk.

5. Applications can create journal entries that are marked as “user generated,”
allowing HA software to quickly identify journal entries to send to backup
servers, where they serialize write operations to update database files,
IFS files, data areas, and data queues in a copy of the database.

Configuration of a user journal consists of deciding what libraries, objects, and
files need to be journaled to ensure the system can be recovered in the event of
an outage. With modern HA/DR software, the actual configuration of a journal is
handled with simple clicks from a high-level GUI interface, but in its basic form, a
journal receiver is first created using the Create Journal Receiver (CRTJRNRCV)
command. Next, a journal is created and an associated receiver is specified using
the Create Journal (CRTJRN) command. Finally, journaling is started for specific
files by associating a file to a journal, accomplished with a Start Journal command
such as Start Journal Physical File (STRJRNPF).

Figure 1: Local Journaling

w w w . s y n c s o r t . c o m

W H I T E P A P E R

Journaling and Recovery Point Objectives
IBM i OS storage management allocates storage to application processes and
handles the retrieval and saving of all data in segments called “memory pages.”
Main memory is treated as a cache that is optimized for performance. As a result,
data that is used repeatedly will be held in memory across multiple changes to the
data. In fact, an object could stay in memory indefinitely. This presents a major
problem for HA and DR, which is why journaling is the solution. While the database
record itself remains in memory across multiple data changes, a journal of the
individual changes is stored on disk in the storage subsystem in a journal receiver
at the completion of each individual data change. In the event of an outage resulting
in the loss of main memory, the current state of the business at the point of failure
can be recreated with the sequential application of the journal entries.

Local journaling captures changes on a source server and writes them to a journal
receiver that also resides on that server. In the event of a system crash, that journal
receiver is available for save-to-tape operations and for use during power-up IPL
operations to recover changed database, IFS, data area, and data queue files for
objects that had not yet been saved to storage. These journal receivers are also
available for use by third-party HA software.

Journaling is the only solution for maintaining a zero or near-zero Recovery Point
Objective (RPO) on the IBM i platform. This is true whether using journaling-based
logical replication solutions or SAN-based hardware replication solutions.

Recovery from an outage means going back to a starting journal entry in the
journal receiver and applying the changes sequentially to ensure that all of the
changed objects lost in memory are accounted for. Journaling provides functionality
to periodically sweep through the entire main storage to write to disk all database,
IFS, data area, and data queue records that have journal entries saved to disk but
the record itself has not yet been written to disk. After each sweep of the memory,
the next journal entry becomes the starting point that will be used for recovery of
transactions in the event of an outage.

5

Journaling
is the only
solution for
maintaining
a zero or
near-zero
Recovery
Point Objective
(RPO) on the
IBM i platform.

w w w . s y n c s o r t . c o m

W H I T E P A P E R

Additional Journaling Features
Journal entries have standard structures for the different object types and include
the ability to minimize the amount of data contained within the journal entry so as
to optimize use of bandwidth.

Journal minimal data—This key journaling feature for database objects reduces
the size of what is saved in the journal. Normally, the entire record, or row, is
included in the journal entry. With journal minimal data, only the portion of the data
that was actually changed gets saved. This is based either on a bit boundary or on
a field or column boundary. The savings in storage space can be significant (but at
the expense of reduced readability of a journal entry for debug purposes).

Before images—These images show the record (or row) in the database as
it appears before the operation makes changes to the data. This record is not
included in the journal entry by default but can be included if needed by the
application. System OS-based applications such as commitment control (see
below) or system-managed access-path protection (SMAPP), which journals
the access paths, require the before images and will override this feature
as necessary.

Commitment control—This feature allows the capability of treating a series of
transactions as a single entity. All of the transactions to a file associated with a
single process are considered to be “pending” until the entire operation is complete.
For example, in banking applications where an ATM operation is cancelled or in
a reservation system where a booking is abandoned, the changes to the data
need to be removed. Journaling is a key element of commitment control, maintaining
the before images so that the changes can be rolled back if necessary.

Journal caching—Caching is a major performance feature of journaling that
optimizes disk writes. It is available under Option 42 of the IBM i operating system.
Since the writing of journal entries is sequential in order to maintain the sequence
of the transactions, there are time delays when a series of individual write operations
are made to the disk. Between all write operations, there is a revolution of the disk
platter before the next sequential sector can be written. By caching a full track of
sectors and bundling them into a single 128K write operation, the entire track can
be written in a single revolution of the disk, eliminating the wait time between disk
sector writes. The performance gain can be substantial. Even with the latest disk
adapter I/O write cache functionality, additional savings will be realized.

The caution when using journal caching is that the journal entries are held in
memory until a full 128K bundle is assembled. Because of this, there is a potential
of losing up to one track of journal entries if there is a source-system crash.

Journal at birth—This feature allows new objects that are added to an existing
database file to be enrolled into the journal associated with the file without having
to monitor for new object creation events in the security audit journal. The savings
in time and complexity contribute to the overall performance of the application.
Inherent journaling is a similar function for IFS objects.

6

w w w . s y n c s o r t . c o m

W H I T E P A P E R

7

Remote Journaling
Remote journaling is an extension of local journaling that sends the journal entries
to a journal receiver on a remote server (see Figure 2). Remote journaling operates
below the machine interface (MI) and performs the communication task faster and
more efficiently than an application running above the MI.

The basic remote journal process (see Figure 2) can be described as follows:

1. An application processes transactions on the source server that typically
update records in a database file.

2. The SLIC creates a journal entry of the actual changed data and sends it
to the local journal receiver in the source-server storage. It also initiates
a communication task to send the same journal entry to a remote journal
receiver on one or more target servers.

3. The memory page remains pinned on the source server until the local
journal receiver is updated.

4. If the communication link to the target server is down for some reason,
the communication task is buffered and sent once the comms link has
been restored.

5. Further action with the remote journal receiver is the responsibility of high
availability software, but typically it applies the journals to the database on
the target server so that the state of the data is synchronized between the
source and target servers.

Journal
Entry

Journal
Entry

Figure 2: Remote Journaling

Database
Copy

w w w . s y n c s o r t . c o m

W H I T E P A P E R

8

Remote journaling is designed for HA, focusing on the efficient transfer of journal
entries to a target server where they will be safe from any planned or unplanned
loss of the source server.

For data protected with a user journal, remote journaling provides the most efficient
mechanism for rapid transfer of the data changes to the target server.

Remote journaling provides solid processes for ensuring that the security and integrity
of the data transfer is maintained for the HA/DR environment. This includes the
following functionality:

Auditing of data transfer—Auditing keeps track of the journal entries sent to the
target server. If acknowledgement from the target is not received, this function handles
the resend process, guaranteeing that journaled information reaches the backup.

Broadcast mode—This functionality sends the journal entries to multiple target
servers and handles the complexity associated with multiple connections. The
theoretical limit of 255 connections is more than enough for any environment. With
broadcast mode, the HA application can maintain multiple target servers and keep
track of the proper direction of replication to the various servers following a switch
of the production environment to one of those servers.

TCP/IP (IPv4 and IPv6)—TCP/IP is the preferred supported communication transfer
mechanism used to connect servers, and remote journaling supports the required
configurations. This includes configuration of SSL Secure Sockets, which provides
the encryption needed to meet today’s security requirements.

Synchronous and Asynchronous Remote Journaling
Remote journaling transmits journal entries either asynchronously or synchronously.

Synchronous remote journaling—This method holds off saving the journal entry to
disk on the source server until acknowledgement of receipt by the target server is
made. Because of this, synchronous remote journaling is more than a communication-
transfer function. This has definite advantages for HA solutions as it provides the
potential for an RPO of zero loss of data in the event of a system failure.

Although synchronous remote journaling is compelling in HA and DR solutions
because it ensures transactions are saved in a copy of the database remote from
the source server, for most companies the effect on system performance often
makes it impractical, particularly if the target server is located greater than 25 km
from the source server.

Asynchronous remote journaling—This method does not add delays to the writing
of the journal entry on the source server. The remote journal communication transfer
is initiated at the same time with the assumption that it will be successful, with verification
after the fact. Most companies that use remote journaling in their HA solution find that
the performance advantages of asynchronous operations is worth the tradeoff as the
potential loss of in-flight data can be handled by check-pointing techniques such as
commitment control.

w w w . s y n c s o r t . c o m

W H I T E P A P E R

9

Optimizing Remote Journal HA Performance
There are many features relating to remote journaling that are designed to optimize
bandwidth, performance, security, and accuracy.

Catch-up mode—When a communication connection between source and target
servers is dropped for any reason, remote journaling will go inactive and an indication
will be sent. Journaling will continue on the source server, and the unsent journal
entries will be buffered until the communication connection has been restored. When
communication is restored and remote journaling is activated, it will come up in
“catch-up mode.” All of the unsent journal entries will be bundled together into the
maximum packet size to optimize bandwidth until remote journaling has caught up
with the incoming journal entries on the source server. The bundling continues until
the journal entry backlog is eliminated. This provides a great performance boost,
which speeds up the process of getting the target synchronized with the source.

Selective journaling—The administrator has control over what is journaled and
thus has the ability to optimize the bandwidth between source and target servers.
Journaling can be configured for libraries, directories, folders, and individual objects.
More importantly, it can exclude things like high-volume temporary work files to
decrease journaling and HA replication performance costs. HA and DR products
such as MIMIX Availability may provide additional ease-of-use configuration
capabilities such as excluding specific objects from journaled libraries. The bandwidth
required for remote journaling benefits greatly from this capability.

Remote journal filtering—This feature further reduces the bandwidth required as
it allows the administrator to select the journal entries being sent. Remote journal
filtering is available under Option 42 of the IBM i operating system. Three criteria
can be used to filter entries sent to the remote system:

• Filtering of before images—This type of filtering eliminates the before image
from the journal entry that is sent to the target server and reduces bandwidth
requirements related to journaling. While before images can be removed from
what is saved in the journal entry, they are necessary when implementing
commitment control. However, rollback is something that occurs on the source
server, not the target server. Thus, journal filtering allows for keeping the
before images in the journal entry for commitment control on the source server
while not sending them to the target server.

• Filtering by object—Object filtering is a major tool for additional bandwidth
reduction. Not only does it allow the administrator to filter out user-related data
objects such as temporary files, but there are also files that are journaled by
the OS on the source server for debug or commitment control purposes that
are not needed for HA and DR on the target server. These are filtered out by
default when remote journal filtering is activated and can result in significant
bandwidth savings.

• Filtering by program name—This filtering is designed for active-active
solutions where all servers are both source and target servers. HA solutions
that provide this feature need to know that the journal entry coming back
from the target server did not originate from the source server by the HA
application, such as MIMIX Availability.

w w w . s y n c s o r t . c o m

W H I T E P A P E R

1 0

The filtering criteria related to the three filtering functions are specified when activating
a remote journal. Different remote journals or individual local journals can have different
filter criteria. It should be noted that remote journal filtering can be specified only for
asynchronous remote journal connections.

Journal caching—As with local journaling, journal caching provides a boost in CPU
performance and decreases bandwidth requirements over communication links. The
journal on the source server will bundle the sequential journal entries into 128K blocks
and send it to the communication interface as a single operation. Journal caching
can also be used in conjunction with synchronous remote journaling. The entire set of
bundled journal entries will not be written to the source-server storage subsystem until
acknowledgement is received from the target server.

Journal minimal data—As with local journaling, journal minimal data reduces the
size of the journal entry and thus can be used to reduce remote journal bandwidth
requirements.

Remote Journaling Integrity and Security
Remote journal validity checking—This feature checks that the TCP/IP communication
protocol is not introducing errors into the data being transmitted. This eliminates the
dependence on auditing within the HA software for communication-based errors.
When operating in unstable networks that introduce errors, the TCP communication
interface error-detection logic will be constantly retransmitting the packet. There is a
finite risk of double-bit errors going undetected by this logic. Remote journal validity
checking can be activated to provide a data check that encompasses the entire journal
entry transfer operation; otherwise, these errors introduced by the network will go
undetected when the journal entry is saved in the copy of the user database, and
detection of the errors would have to rely on audit functions within the HA software.

w w w . s y n c s o r t . c o m

W H I T E P A P E R

1 1

How HA/DR Applications Build Upon
Remote Journaling to Provide a
Complete Solution

The fundamental role of an HA solution is twofold:

1. To provide quick recovery of operations in any unplanned
downtime scenario

2. To provide continuity of operations during planned
downtime events

What journaling provides is a solid platform on which an HA solution can be built—
whether hardware-based or software-based; it offers protection for transaction integ-
rity in an IBM i environment where memory is used as performance cache. Remote
journaling additionally provides a solid platform for software-based HA environ-
ments, which minimizes bandwidth requirements across communication networks.

For software-based HA products such as MIMIX Availability, using remote journal-
ing to replicate user data is straightforward. Starting with the journal receiver on the
target server, the primary task is to apply the journal entries in sequential order.

In addition to remote journaling, it’s essential that your software-based HA solution
help you manage and maintain the following:

System synchronization—Synchronization ensures that all transactions that have
been applied to the primary database have also been applied to the backup database.
If the data and objects on a target server are not identical to those on the source server,
the ability to switch the production environment to the target server when required
may be compromised. It is this switch confidence that is key to any successful HA
solution.

Data integrity—The ability to verify that the contents of the backup database are the
same as the contents of the primary database at any given time is critical to ensuring
effective HA.

IBM i OS journaling on its own does not provide source and target synchronization
nor integrity validation. This functionality is provided only by advanced HA software.
Without it, switching the production environment to the target (the act of substituting
the target for the source server, referred to as “role swap”) cannot reliably occur.

w w w . s y n c s o r t . c o m

W H I T E P A P E R

1 2

• Non-journaled objects—Journaling handles the four basic object types that
make up the vast majority of user data. However, there are other objects that
may be important to the user’s environment and critical for maintaining the
business when production is switched to the target server. An example would
be changes to objects such as program objects or user profiles, which are not
reflected in a journal and must be handled independently to properly synchronize
source and backup servers. Failure to do so may jeopardize the success of a
switchover or failover of production to a backup server. HA software products
typically provide object-level replication services that handle some number of
these vital non-journaled objects.

 If the target server is to be complete and ready to run critical business
applications when called upon to do so, the HA solution must also replicate
application objects (programs, user profiles, authorization lists, configuration
objects, spooled files, etc.). In this case, in addition to applying the changes
to the target database, work must be performed on the source to capture
and send the necessary changes to the target.

• Switchover—One of the more critical features of any HA solution is the
ability to quickly utilize your target server as the production environment,
whether during a test or during an actual downtime event. This process is
referred to as a switchover or role swap. There are many factors to a suc-
cessful switchover, which include HA software functionality as well as strong
internal processes and regular testing.

• Housekeeping—Another essential task that is the responsibility of an HA

solution is removing journal entries from the target server once they are
applied to the database. Entries prematurely designated for removal would
result in data-integrity or synchronization problems as these transactions
would not be available for application. Some HA products provide journal
management tools that coordinate with their journal-apply processes so that
journal entries are deleted only after the HA software is finished with them.
These products can coordinate the deletion of both remote and local journal
entries.

w w w . s y n c s o r t . c o m

W H I T E P A P E R

1 3

Summary
The foundation of every software-based high availability solution is journaling—
both local and remote. In fact, even hardware-based HA solutions require local
journaling to maintain system integrity. Integrated within the IBM i operating
system, it’s the critical plumbing of local and remote journaling that makes it
possible to meet aggressive objectives for rapid recovery time, a complete
recovery point, and low impact on network bandwidth. Software vendors have
built HA solutions around these powerful journaling capabilities, with the top
vendors providing a suite of capabilities necessary for a complete, reliable
HA solution.

Armed with the knowledge of journaling, do your homework to understand each
component of an HA solution. Fully recognize your business requirements and
apply the appropriate technology, methods, and skills to achieve a solution that
addresses your specific availability needs and provides a satisfactory ROI.

w w w . s y n c s o r t . c o m

W H I T E P A P E R

1 0

About Syncsort
Syncsort is a trusted enterprise software provider and the global leader in Big Iron
to Big Data solutions. More than 6,000 organizations, including 84 of the Fortune 100,
use the company’s products to solve their most complex data management challenges,
on premise and in the cloud. Syncsort helps customers optimize traditional data systems
and deliver mission-critical data from these systems to next-generation analytic
environments. Its Big Iron to Big Data portfolio now features the #1 high availability
product for IBM i Power Systems, powerful cross-platform capacity management,
best-in-class mainframe app and machine data access & integration, and market-leading
data quality capabilities. Rediscover Syncsort at www.syncsort.com.

© 2017 Syncsort Incorporated. All rights reserved. All other
company and product names used herein may be the
trademarks of their respective companies.

